In my last significant post I stated the global Artin map for the rationals intertwined with the Galois action on the values of Bost-Connes KMS states. I wanted to talk about the Artin map in a bit more detail. The general case for any number field \mathbb{K} is a bit too complicated for me to discuss right now, but the case for \mathbb{Q} isn't bad at all. Let's start with \mathcal{C}_\mathbb{Q} = \mathbb{A}^{\ast}_\mathbb{Q}/\mathbb{Q}^{\ast}, the Idele class group of \mathbb{Q}.
First recall the definition of the Adeles, \mathbb{A}_\mathbb{Q}.
\displaystyle \mathbb{A}_\mathbb{Q} = \mathbb{R} \times \prod_{p \; \text{prime}}^{\prime} \mathbb{Q}_p
Where \mathbb{Q}_p is the completed field of p-adic numbers. The idea here is that we're looking at all possible completions of the number field \mathbb{Q}, including the standard absolute value and all p-adic valuations. Each of these completed fields is a ``local'' field, containing information about \mathbb{Q} at a particular prime, and the ring of Adeles combines all that information into one giant ring. The \prime on the product \prod^{\prime} indicates that this product is restricted over \mathbb{Z}_p, id est, it has the condition that$ \displaystyle \mathbb{R} \times \prod_{p \; \text{prime}}^{\prime} \mathbb{Q}_p = \{ a=(a_\infty,a_2,a_3,\ldots) \in \mathbb{A}_\mathbb{Q} \; \text{iff} \; a_p \in \mathbb{Z}_p \; \text{for all but finitely many p}\$
\mathbb{A}^{\ast}_\mathbb{Q} is the set of all invertible elements in the ring, we can write it \mathbb{R}^\ast \times \prod_p^\prime \mathbb{Q}_p^\ast. As \mathbb{Q}_p is the field of fractions for \mathbb{Z}_p, we have an isomorphism \mathbb{Q}_p \cong \mathbb{Z}_p[\frac{1}{p}] \cong p^\mathbb{Z} \times \mathbb{Z}_p. If we identify p^\mathbb{Z} with \mathbb{Z} we can write \mathbb{Q}_p^\ast \cong \mathbb{Z} \times \mathbb{Z}^\ast_p and\displaystyle \mathbb{A}_\mathbb{Q}^\ast = \mathbb{R}^\ast \times \prod_{p \; \text{prime}}^{\prime} \mathbb{Q}_p^\ast \cong \{\pm1\} \times \mathbb{R}_{>0} \times \prod \mathbb{Z}_p^\ast \times \bigoplus_p \mathbb{Z}
Now for an r \in \mathbb{Q}^\ast, we can write r = \text{sgn}(r) \prod_p p^n(p), so we can take \mathbb{Q}^\ast to \{\pm1\} \times \bigoplus_p \mathbb{Z} by r \mapsto (\text{sgn}(r),n(p)_p). By noted that \mathbb{R}_{>0} \cong \mathbb{R} by logarithm, we can write:
\displaystyle \mathbb{A}_\mathbb{Q}^\ast \cong \mathbb{Q}^\ast \times \mathbb{R} \times \prod_p \mathbb{Z}_p^\ast
Now recall our favourite profinite group \hat{\mathbb{Z}} = \varprojlim_k \mathbb{Z}/k\mathbb{Z} \cong \text{End}(\mathbb{Q}/\mathbb{Z}). Since we can write each k as p_1^{n(p_1)} \ldots p_l^{n(p_l)}, we also have\displaystyle \mathbb{Z}/k\mathbb{Z} = \prod_{i=1}^{l} \mathbb{Z}/p_i^{n(p_i)} \mathbb{Z}
After passing to the inverse limit we have:\displaystyle \hat{\mathbb{Z}} = \varprojlim_k \mathbb{Z}/k\mathbb{Z} = \prod_p \varprojlim_n \mathbb{Z}/p^n\mathbb{Z} = \prod_p \mathbb{Z}_p
Thus \mathbb{A}_\mathbb{Q}^\ast \cong \mathbb{Q}^\ast \times \mathbb{R} \times \hat{\mathbb{Z}}^\ast and finally:\displaystyle \mathcal{C}_\mathbb{Q} \cong \mathbb{R} \times \hat{\mathbb{Z}}^\ast
Now I cannot prove it, but class field theory tells us that the map \theta:\mathcal{C}_\mathbb{Q} \rightarrow \text{Gal}(\mathbb{Q}^\text{ab}/\mathbb{Q}) is surjective, and the kernel is the connected component of the identity on \mathcal{C}_\mathbb{Q}, which we denote \mathcal{D}_\mathbb{Q} = \mathbb{R}. Hence \mathcal{C}_\mathbb{Q} / \mathcal{D}_\mathbb{Q} \cong \hat{\mathbb{Z}}^\ast and we have an isomorphism:\displaystyle \theta : \hat{\mathbb{Z}}^\ast \rightarrow \text{Gal}(\mathbb{Q}^\text{ab}/\mathbb{Q})
We can see that these two groups are isomorphic assuming only the Kronecker-Weber theorem (which says that \mathbb{Q}^\text{ab} = \mathbb{Q}^\text{cycl}) and some facts about inverse limits and Galois theory. \mathbb{Q}^\text{cycl} = \bigcup_n \mathbb{Q}(\zeta_n), where \zeta_n is the n-th root of unity. Recall that \text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^\ast. Hence we have\displaystyle \text{Gal}(\mathbb{Q}^\text{cycl}/\mathbb{Q}) = \varprojlim_n \text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \cong \varprojlim_n (\mathbb{Z}/n\mathbb{Z})^\ast = \hat{\mathbb{Z}}^\ast
Thanks to the following sources for help on this post:
- Conversation with Prof Minhyong Kim
- Lenstra, Profinite groups and The Idele Class Group
- Fields and Galois Theory, JS Milne
- p-adic Numbers, Fernando Gouvea
No comments:
Post a Comment